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In Rodriguez and van Kampen's  1976 paper a method of extracting information 
from the Fokker-Planck equation without having to solve the equation is out- 
lined. The Fokker-Planck equation for a Duffing oscillator excited by white 
noise is expanded about the intensity e of the forcing function. This expansion 
is carried to order d~(cd/-'). However, no studies are made of the effects of the 
order of the expansion or variation of the parameters, nor are comparisons 
made to experimental results. In the present paper, the expansion is carried to 
a higher order, C(ot~/'-), results are presented and compared to Monte Carlo 
experiments using both white and colored noise, and parametric studies are per- 
formed on the intensity of the forcing function and the damping coefficient. It 
is found that the expansion method works well for the case of white noise and 
for colored noise where the correlation time is less than 0.1 sec, but fails to give 
certain details. It is also found that the system behaves as expected when the 
parameters are varied. 

KEY WORDS:  Fokker-Planck equation; white noise; colored noise; van 
Kampen expansion; Monte Carlo; Duffing oscillator. 

1. I N T R O D U C T I O N  

The Fokker-Planck equation has proven to be a useful tool in the analysis 
of simple nonlinear oscillators excited by stochastic processes. As a partial 
differential equation for the probability density function of the response, its 
solution completely defines the solution of the problem. It can be used to 
analyze both a single oscillator of the form 

m2 + ~,(2, x ) 2  + k(k,  x ) x  = ~ ( t )  (1) 
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or a system of multiple, linked, oscillators of the form 

M_2 + F(_2, ~-)~- + K(~, _x)_x = _~(t) (2) 

In many cases, a physical system can be approximated by such a 
system of nonlinear oscillators. The systems so modeled can range from a 
Brownian particle to structures excited by yon Kfirm~.n vortex shedding. 
Such modeling can be useful for gaining insight into a problem and the 
way in which the system will behave as certain parameters are varied. 

Once one has decided on the system of oscillators to be used to repre- 
sent the physical system, the derivation of the Fokker-Planck equation is 
relatively straightforward, although tedious. The problem remains of how 
to solve it for the probability distribution of the response. In a very few 
cases, the Fokker-Planck equation can be solved analytically, but in most 
cases no analytical solution exists and one usually must resort to a numeri- 
cal solution. However, this can be computationally intensive and gives little 
insight into the larger problem. 

In their 1976 paper, Rodriguez and van Kampen It) outline a method 
of dealing with the case of an oscillator excited by weak Gaussian white 
noise. The Fokker-Planck equation of the system is expanded about the 
intensity ~ of the driving function. This expansion is carried to (9(~/-~). In 
this way the statistics of the fluctuations are obtained directly, This method 
shows promise as a way to use the Fokker-Planck equation to gain useful 
information about a wider variety of systems than was possible before. 

This is the first of a planned series of papers exploring the usefulness 
of this method. As in the original paper, the method is applied to the 
problem of a Duffing oscillator excited by Gaussian white noise. The 
inherent assumptions of the method are explained here in detail. The 
expansion is carried both to the same order as in the original paper and to 
~0(c~3/2). Results are presented and compared to a Monte Carlo experiment. 
Parametric studies are done on the parameter of expansion as well as on 
the other important variable in the expansion: the coefficient of damping. 

2. EXPANSION OF THE FOKKER-PLANCK EQUATION 
FOR A DUFFING OSCILLATOR 

As in the Rodriguez and van Kampen paper, henceforth called the 
"original paper," the system under consideration is a Duffing oscillator in 
a heat bath. The equation of motion can be written simply as 

.~ + ~2 + x + x 3 =  F(t)  (3) 
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F(t) is a Langevin force ~'-I and is assumed to be Gaussian white noise with 
the following properties: 

<F(t)> =0 

( F(t) F(t ') > = 2 ~ f ( t -  t') 
(4) 

It is assumed that the immersion of the oscillation takes place at time t = 0 
and that the system is not necessarily at rest. 

f ( x ,  v; t) is defined as the joint probability density function of x and 
v = ?? at time t. This leads to the following Fokker-Planck equation (see 
Ochi OI for a complete derivation): 

of af 3 af a a2f - ~ + v ~ - ( x + x  )~=~,~(v/)+~ (5) 

As f ( x ,  v; t) is a complete description of the system response, solution of 
the above differential equation for f constitutes a solution of the problem. 

The same assumptions on the sizes of the variables in Eq. (5) are made 
as in the original paper: namely, that y, x, and v will all be assumed to be 
of the same order of magnitude, and much larger than cc 

In the original paper, it is assumed that the system response due to the 
forcing function will be small compared to the deterministic response due 
to the initial conditions. Therefore, the total response can be viewed as ran- 
dom fluctuations A,. and d,, superimposed onto the deterministic response 
to the initial conditions. Furthermore, the random fluctuations will be of 
order ct ~/-'. Because the only source of energy is F(t), the power input to the 
system is proportional to ~t. But if the system is to remain stable, then the 
viscous power dissipation of the fluctuations caused by the influence of F(t) 
must be of equal average magnitude as the power input. Therefore 
(9(~,,r/2) = ~0(c~) or ~o(q) = ~0(c~/2). But the kinetic energy of the fluctuations 
must be of the same order as the potential energy. So (p({2) = (_9(r/2), which 
implies that ~0(~)=(_0(~1/2). Therefore, d , .=~ /2{  and j , , = ~ / 2 q ,  where 
and q are of order unity. Therefore the following substitutions are made: 

x=(~( t )  + ~'/2~ (6) 

v = ~(t  ) + ~l/2q (7) 

In the original paper, the initial conditions ~b(0) and qJ(0) are assumed 
to be zero and the expansion carried through to give the time derivatives 
of the second-order moments. In Weinstein and Benaroya 14~ the expansion 
is explained in somewhat greater detail and the fourth-order moments are 
also derived. In total the following eight equations are derived: 
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d 
d--7 (r  = 2 (( ,7) (8) 

d 
( ( r / )  = ( , / 2 )  _ ( ( , _ )  - 7 ( ( , / )  - c t ( ( " )  + (9(cc 3/2) (9)  

dt 

d 

dt 
( , /2)  = - 2 ( ( , / )  - 2?(,/2 ) - 2cc ( ~ 3 , / )  + 2 + (9(~ 3/2) (10) 

d 
dt ( ( 4 )  = 4 ( ( 3 r / )  ( l l )  

d 
dt ( (3 , / )  = 3 ((2r/2) _ ( (3 , / )  _ ( ( 4 )  + (9(ct3/2) 

d 
dt (~2,/2) = 2 ((r /3)  _ 27 ((2, /2)  _ 2 ( (3 , / )  -b 2 ( (  2 ) + (.0(0~ 3/2) 

d ( ( , / 3 )  = ( ~ 4 )  __ 3 y ( ( , / 3 )  _ 3 ((2r/2) + 6 ( ( , / )  + C9(cc 3/2) 

d 
dt ( , /4)  = _ 4 7 ( , / 4 )  _ 4 ( ( r / 3 )  q_ 12(, /2)  + O(cx3/2) 

(12) 

(13) 

(14) 

(15) 

If it is the stationary behavior that is of interest, then one can obtain 
the equilibrium values of these quantities by setting each time derivative 
equal to zero. Then the equilibrium, or stationary, states of each expecta- 
tion can be found by simple linear algebra: 

1 3 
( ( : )oq  = F -  ~ ~'~ ((3,/)~q = 0 + C0(~ 3/2) 

I - -  r_0(~3n) (~,/)oq = 0 ((2,/2)oq = + 
7 2 

1 1'2 ( , /2 )eq  ~___----~-(ff(or / ) ( ( , / 3 ) e q  =0-} -  C0(~3/2) 
? 

3 3 ( ( 4 )  eq = ~"~ -'[- (~O (t~3/2) ( ,/4 ) eq ~- ~-'~ -1- ~)(0~3/2 ) 

If one is interested in the transient response of the system, and if 
one can accept a solution of d9(~/2), then one can obtain it analytically. 
Equations (8)-(10) can be written in matrix form as follows: 

~ ~ ( ( ( , / ) ) / =  ~g3 / ( ( ( , / ) ) / +  + (.0(~ 3/2 ) (16) 
\ ( ( , / 2 ) ) /  \ ( ( . 2 b /  
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where 

l~ ~ ,/t'3= - 1  - 7  

0 - 2  - 2 7  

This can be solved through standard techniques to yield the time-evolving 
variances. It must be noted that by solving only these three equations, the 
order of the solution has been reduced to d~(ct~/2): 

((~r/)) / = 1/2 - 1 / 4  

r 1/z, -1/,~,_ 

--1/23 ]{e)"'~ (1~7 I 
1/4 ~ / e ) " ' / +  

l1223Jke a'] \ 1 / 7 ]  

(17) 

where 

~-J = - 7  

22 = -Y + 2iw 
23 = -y -- 2iw 
w=(1-z712)t/z 

If one is interested in the transient response and desires a solution of 
order O(~3/z), one could cast all of Eqs. (8)-(15) into a matrix equation of 
the form of Eq. (16). This would yield a matrix of rank 8. To solve this 
analytically would require the analytical eigensolution of this rank-8 
matrix. This is a difficult proposition at best with unclear practical need. 
Instead, for each particular set of parameters 7 and /~ a numerical matrix 
is obtained. The eigensolution is then obtained numerically and the results 
calculated. It should be noted that there is no theoretical loss of accuracy 
in solving the system of equations this way; only roundoff error degrades 
the accuracy of the solution. 

Thus we have a method for obtaining in closed form the time-evolving 
moments of the Duffing oscillator subjected to a white-noise forcing 
function. 

3. R E S U L T S  

The response of a Duffing oscillator with damping coefficient 7 = 1.0 
excited by white noise of intensity ~ = 0.1 was calculated using Eq. (17) and 
by solution of all of Eqs. (8)-(15). As a point of comparison, a Monte 
Carlo experiment simulating a Duffing oscillator with the same parameters 
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was performed. This Monte Carlo experiment consisted of 1000 iterations 
of a fourth-order Runge-Kutta integration of the following restatement of 
Eqs. (3): 

d d 
- - x = v ,  ~ ( t )  u - x - x  3 (18) 
a t  -d;t v = - 

The results of the (9(~ ~/2) analysis, the (.9(ct 3/2) analysis, and the Monte 
Carlo experiment are plotted in Figs. 1-3. 

Figure 1 shows the time evolution of ( ( 2 )  as calculated by all three 
methods. The (9(or ~n) analysis shows ( ( 2 )  increasing monotonically to its 
steady-state value of approximately one. The higher-order analysis shows 
((~-) increasing in nearly monotonic fashion to its steady-state value of 
about 0.75. However, this curve does exhibit some overshoot at about 
2.5 sec. The results of the Monte Carlo analysis are quite close to those of 
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the higher-order analysis, reaching the same steady-state value. The main 
difference between the two curves is the slightly greater rise time of the 
Monte Carlo results. The higher limit of the O(ct ~/2) analysis and the over- 
shoot of the C(ct 3/2) analysis are artifacts of the expansion process. The 
higher-order, (9(cc3/2), time derivatives differ from the lower-order, 6(ccJ/2), 
ones by the subtraction of co((4) in the case of (d/dt)(~rl) and of 2CC(~3~1) 
in the case of (d/dO(C-). However, it can be seen from Fig. 4 that (~4)  >/0 
during the entire time span of interest and rises in magnitude quickly, and 
(~3~)  is greater than zero during the first half of the time span of interest, 
where the second-order moments are changing most rapidly. This would 
explain the slower rise in the magnitude of the (9(cc 3/2) solutions than the 
(9(cc ~/-') solutions. It also indicates that inclusion of the higher-order terms 
serves to lower the overall value of the analytical results and that the omis- 
sion thereof causes the higher overall values of the analytical methods than 
those of the Monte Carlo methods. As one would expect, the higher-order 

Fig. 4. 
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analyses consistently show more points of inflection than do the lower- 
order analyses. 

Figure 2 shows nearly identical curves for all methods. As in Fig. 1, 
the d~(ct 3/z) analysis shows more overshoot in one place than does the 
lower-order analysis. Here this overshoot occurs at about 4 sec, at the 
second local extreme. It is also noted that only the (9(~ 3/2) method 
accurately reflects the region where the Monte Carlo curve is negative. The 
initial excursion of the Monte Carlo curve is not as great as that of the 
other two curves, although all three approach the x axis as time increases. 

Figure 3 provides a qualitatively similar comparison of results with 
both analyses almost coincidental and again slightly greater in the transient 
region than the Monte Carlo experiment. All three curves approach a 
steady-state value of approximately 1. 

Figure 5 shows how the time evolution of (~2), as calculated by the 
(~(ct 3/2) analysis, is affected by increasing ~. Figure 6 shows the same study 
for the Monte Carlo experiment. Figure 5 shows not only a decrease in the 

Fig. 6. 
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Fig. 7. 
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steady-state values of ( ( 2 )  with increasing values of ~,, but also a smoothing 
of the curves. The decrease in the steady-state values is also seen in the 
Monte Carlo curves. The cause of the decrease is a physical one: increased 
damping implies increased viscous energy dissipation which leads to 
smaller excursions of the oscillator. Comparison of Figs. 5 and 6 shows that 
even when 1' becomes large enough to violate the order-unity assumption, 
the analysis still gives reasonable results. In fact the agreement between 
results becomes better at higher values of~. It can be seen that, even for 
7 = 0.6, the Monte Carlo curves are relatively smooth,  with the exception 
of the small-scale "wiggles" inherent in Monte Carlo analysis. This 
indicates that the multiple local maxima and minima, i.e., at 3, 5, 7, and 
9 sec, in the analytical curves at ~, = 0.6 are due to the low order o f  ~, of  the 
analysis. It was assumed at the beginning of the analysis that ~, is of order 
unity. However, it can be seen from these curves that the further ~, is from 
this assumption, the worse are the results of the analysis. 
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The behavior of the system as Y becomes small is further investigated 
in Figs. 7 and 8. These curves show how, as ? goes from 0.4 to 0.3, the 
analysis breaks down completely. It was shown in Figs. 5 and 6 that 
the y = 0.6 analysis differed significantly from the Monte Carlo analysis 
in the transient region of 0-5 sec, although its large-time behavior was 
accurate. Figures 7 and 8 show that as ? is made smaller, even the 
large-time behavior becomes unreasonable, with ( ( 2 )  becoming negative, 
which is clearly impossible. 

Figures 9 and l0 show how the time evolutions of ( ( 2 )  are affected 
by increasing values of cc One can see in Fig. 9 what happens as the 
assumption that 0t is small as compared to unity is violated. As is shown 
in Fig. 9, the curve for 0~--0.3 exhibits oscillations that damp out slowly 
with time. As ct becomes even larger, negative values for ( ~ 2 )  develop. 
However, since the average of a squared quantity cannot be negative, these 
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Fig. 11. 

1.0 

0.8 

A 

c~ 0.5 

t e--0.001 to= 1.0 

tc~0.01 tc~ 10.0 

/ 

0.3 

0'00'.0 2.0 4.0 6.0 
Time, seconds 

.: .f;;.;; S -  - - - . . . . . . . . . . .  

8.0 10.0 

(~2) versus time for different values of r~, of )' = 1.0, ~ = 0.1, calculated by Monte 
Carlo simulation. 

results are spurious. The trend of the steady-state value of (~2)  decreasing 
with increasing values of ~ is common  to both figures. This does not violate 
the basic assumption that ( is of order unity when ~ is small. ( does indeed 
remain of order unity; it was not assumed that ~ was independent of~. 
Here ( ( 2 )  decreases with increasing ~ due to the nonlinearity of the 
Duffing oscillator. The energy stored in the nonlinear spring is greater than 

~.. ~.e 1 4 that stored in the linear spring by none . . . .  - - ~ l i  . . . .  = z x .  Therefore the 
effect of the nonlinearity of the Duffing oscillator is to decrease (~2),  and 
this effect will increase with increasing ( ( 2 )  and therefore increasing ( ~ ) .  

Figures 11-13 show the results of Monte Carlo experiments for the 
system driven by colored noise. In each curve the time-evolving behavior 
of the second-order moment  is depicted for various values of the correla- 
tion time r~. All three figures show essentially the same behavior for the 
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Fig. 13. 
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case of zc = 0.001 and Zc = 0.01 as for the white noise case, Figs. 1-3. For 
the case of re=0.1,  the effect of the correlated nature of the noise is 
noticeable, but perhaps acceptable for some applications. It is clear that 
when the correlation time becomes greater than 0.1, the results differ 
significantly from the white noise case. This is as one would expect: at 
rc > 0.1 the correlation time becomes comparable to the natural period of 
the oscillator, which is about 1 sec. The correlated nature of the noise 
appears as a effect of time scale rc on the time history of the correlated 
noise. If the time scale of the correlation is much smaller than the natural 
period of the oscillator, then the oscillator cannot respond to this effect. 
However, as zc approaches the natural period of the oscillator, the 
oscillator can be, and is, affected. 

4. CONCLUSIONS 

It can be seen from the figures that the agreement between the results 
of the various methods of solution is good. The trends observed are not 
surprising. The further the parameters of the system are from violating the 
assumptions of the analysis, the better the analytical results agreed with 
those of the Monte Carlo experiment. It is also seen that, by and large, the 
higher-order analysis is more accurate. One interesting point is that 
the analytical techniques are consistently, albeit slightly, greater than the 
Monte Carlo experiments. This conservative nature of the analytical 
method should be noted in applying it. 

The method can be applied to systems where the three basic condi- 
tions of the expansion are met: that the intensity of the forcing function ct 
be of order smaller than unity, the damping of the system be of order at 
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least unity, and the forcing function be essentially uncorrelated in time, i.e., 
correlation time r,. < 0.1. 

This technique is a valid analytical tool. It is well suited to studying 
the behavior of a system under a variety of conditions as long as the initial 
assumption that ct ,~ 1 is not violated. The results it gives are accurate and 
computat ional ly fast enough to embed such a model as an element of a 
large model. 
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